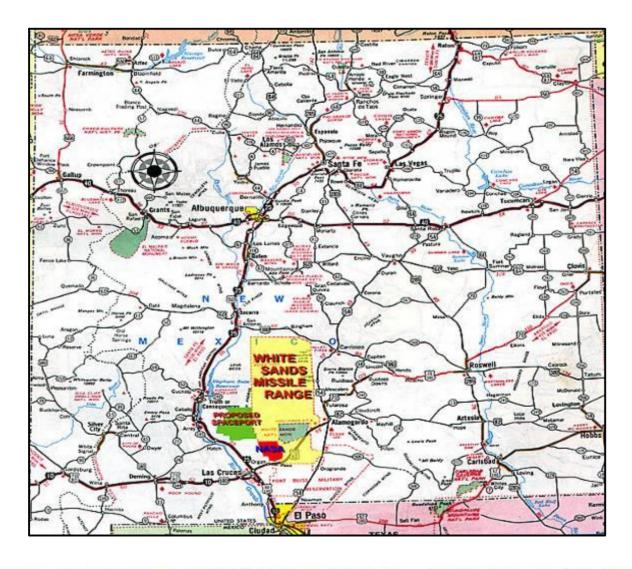


NASA White Sands Test Facility

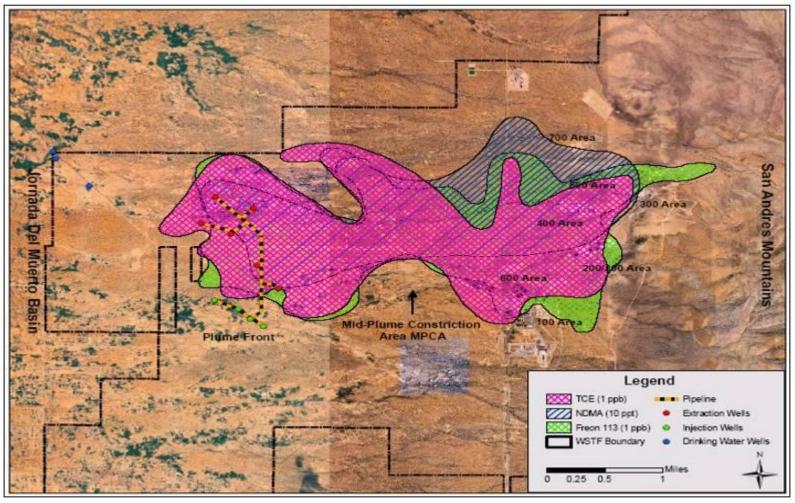

- Constructed in 1962-64 to Support Apollo Project
- Occupies

 28 Square
 Miles of the
 SW Corner
 of WSMR

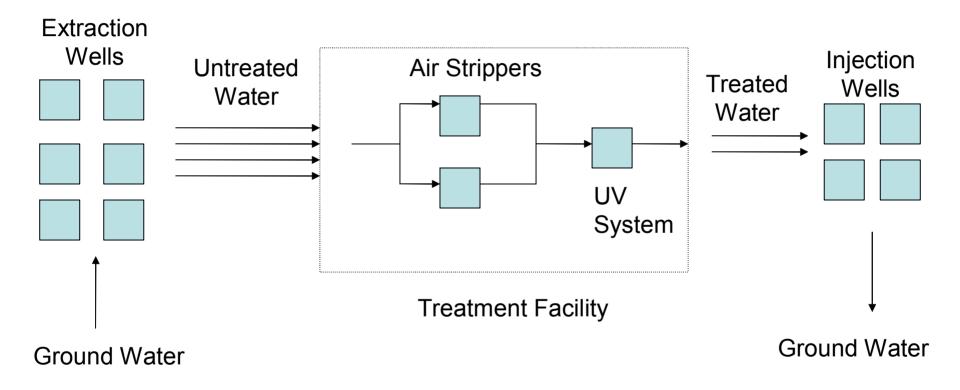
NASA White Sands Test Facility

Overview

Plumefront Treatment System


- Historic operations and practices during the 1960's to early 1980's resulted in chemicals in the groundwater
 - Rocket Propulsion system testing programs:
 - N–Nitrosodimethylamine (NDMA)
 - Dimethylnitramine (DMN)
 - Cleaning Operations (tank leakages):
 - Trichloroethene (TCE)
 - Tetrachloroethene (PCE)
 - Freons (11, 21, and 113)

Plumefront Treatment System


- Groundwater Treatment System Purpose
 - Stop westward movement of the plume
 - Protect drinking water and irrigation wells
 - Treat chemicals in the groundwater
 - Using proven technologies
 - Cleaning chemicals are air stripped
 - NDMA and DMN are broken down using UV Photolysis
 - Return (inject) the treated water to the aquifer

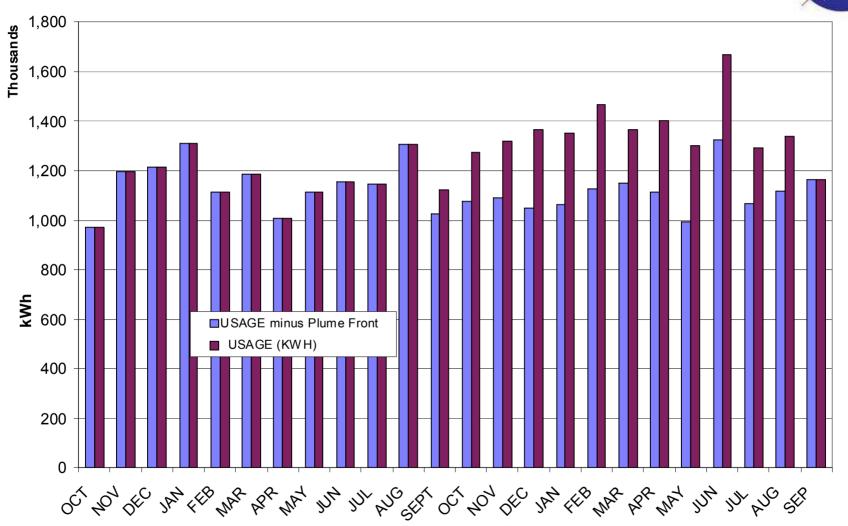
Plumefront Remediation System Air Strippers

- VOCs including TCE, PCE, Freon 113, Freon 21, and Freon 11 are air stripped and released to the surrounding air where they are broken down by normal processes
 - Validation test data demonstrated the total emission rate is 0.3 lb/h (1.33 tons/year).
 - For comparison, some industrial processes are permitted release tons per day of these compounds.
 - VOC emissions are ~ 8 times lower than the level required to notify NMED of a new emission source.
 NMED determined that no permit is required.

Plumefront Remediation System 250 kW UV Reactor

- NDMA and DMN are oxidized to acceptable by-products by UV Photolysis.
- The UV reactor contains twelve 30 kW lamps (nominal operation at 20 kW).
- Lamps emit UV light into the contaminated water stream between 200 and 250 nm.

Post treatment photos of UV Reactor Internals at Building 650 (10/19/2004)



- Energy costs over the life of the groundwater cleanup at WSTF are expected to approach \$100M for 24/7 operations and an estimated 60 years run time (FY05 estimate assumes a stable power cost).
- Today's demand is > 500 kW with only the Plume Front System online.
- Once the complete Remediation System is activated (Plume Front and Mid Plume) the systems will use ~ 1 MW.

Electrical Usage

Electrical Usage

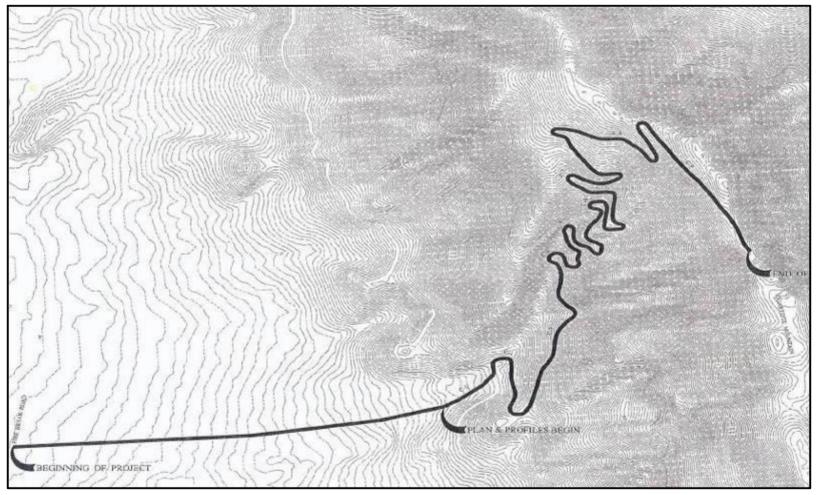
- Not counting the Groundwater Remediation systems, WSTF has a 24/7 nominal demand exceeding 1.5 MW with daytime peaks over 2.5 MW.
- WSTF has several tenants and the combined nominal demand is currently 7 MW.

Electrical Usage

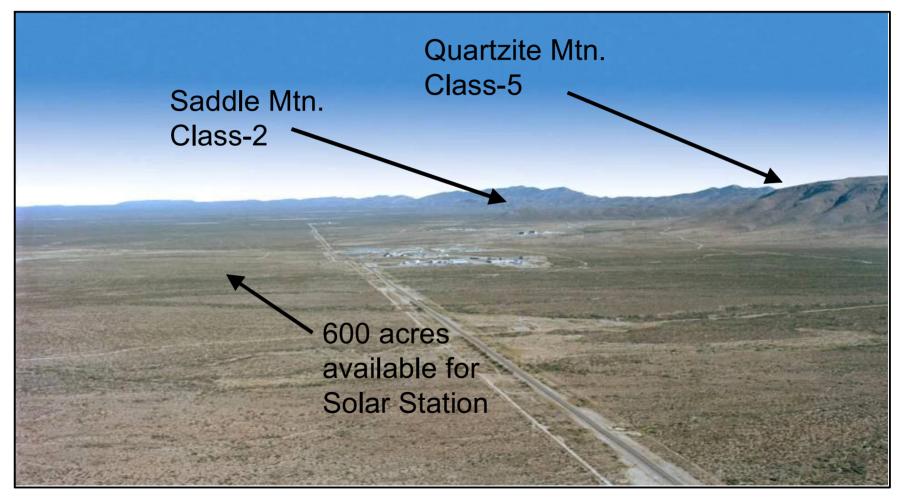
- The El Paso Electric Company (EPEC) transformer servicing the WSTF Industrial Complex has capacity of 11 MW.
- In June 2006, the combined electrical peak load reached 11MW.
- One tenant is planning to double their utility load by 2009, which is going to cause a problem with our current configuration.

- WSTF has a Class 5 wind located on the mountain range east of the facility (Class 5 out of 7 is excellent)
- Quartzite Mountain is able to support fourteen
 1.5+ MW wind turbines. Access is a problem.
- Feasibility was performed to use wind energy to supplement commercial power.
 - Three turbines could supply 99% of needed energy for the Remediation Station.
 - At present, we are looking options to use renewable energy to power WSTF and even WSTF Industrial Area.

Looking into the Future Quartzite Mountain Tower



Looking into the Future Road for Access (Challenge)



- WSTF also has a Class 2 wind site north of the Quartzite Mountain site.
- Saddle Mountain is able to support two or three turbines. Access to this site is significantly easier.
- EPEC has operated a Class 2 site for several years. WSTF is planning to buy green credits in 2007 from EPEC.

- Working with EPEC contracting on how to handle excess power. At this time, the option of receiving credit for energy supplied to the EPEC grid is being discussed.
- Storage of excess power is the goal for the WSTF test bed.
- Integrating Solar and Wind power is being considered.

WSTF Plan

- Wind and Solar Power to operate Remediation System and WSTF Industrial Area (07-09)
 - Environmental Assessment
 - Design, Construction, Activation
- Test Bed for Hydrogen Fuel Cells (07-08)
 - Form WSTF Technology Team
 - Investigate modern Hydrogen technologies
 - Evaluate and test Hydrogen technologies
- Test Bed for Storage Technologies (08-10)

WSTF Plan

- Power Transfer Technology (08-09)
 - Usage of stored energy via Fly Wheel technology
- Development of more compact renewable energy systems for remote location (as technology develops)
- Consideration of other renewable energy sources (ongoing)
- Automated Management and Distribution
 Control System for various systems (start 07)

	0	Task Name	Duration	Start	Finish			200	2007			2008			2009	
	Ĭ					Qtr 3	Qtr 4	Qtr	1 Qtr 2	Qtr 3 Qt	r 4 Otr	1 Qtr 2	Qtr 3 Qtr	4 Qtr 1	Qtr 2 G	
1		☐ Renewable Project from 10/31/06 Forward	625 days	Mon 10/30/06	Fri 3/20/0!		-							_	•	
2		☐ Wind Energy	625 days	Mon 10/30/06	Fri 3/20/09		-	-						-	•	
3		Roadway Feasibility Study and Preliminary Des	44 days	Mon 10/30/06	Thu 12/28/0i											
4	III	Environmental Assessment	130 days	Tue 1/2/07	Mon 7/2/0											
5		Pursuit of Potential Third Party Funding w/DOE (90 days	Mon 10/30/06	Fri 3/2/01											
6	III	Roadway Construction	220 days	Mon 1/22/07	Fri 11/23/0											
7	-	Design of Windmills and Transmission	180 days	Mon 12/4/06	Fri 8/10/0											
8		Construction of Windmills and Transmission	360 days	Mon 11/5/07	Fri 3/20/0:											
9		☐ Solar Energy	470 days	Mon 1/15/07	Fri 10/31/01			_		-		v v v v v	_			
10		Solar Farm Design Devlopment	180 days	Mon 1/15/07	Fri 9/21/0											
11		Environmental Assessment	130 days	Mon 8/6/07	Fri 2/1/0:											
12		Solar Farm Construction	180 days	Mon 2/25/08	Fri 10/31/0											
13		☐ Power Storage	130 days	Mon 10/1/07	Fri 3/28/01					-	-	•				
14		Hydrogen Storage Feasibilty Study	130 days	Mon 10/1/07	Fri 3/28/0:						10					
			-2,00,1=04102													

- Three options under consideration
 - Energy Service Provider Contracts (ESPC) for combined wind and solar systems design and installation
 - Installation of wind farm by EPEC (obligation to meet green credits). Contractor that won bid for their project is looking for investors.

- WSTF manages design and construction of projects.
 - Continue to work with partners, completing designs and EAs, and working with vendors on long-lead procurements.

Partners

- NASA HQ (Power for Remediation, Test Bed)
- Portuguese (Wind farm, Solar)
- NREL (ESPC)
- NMSU (Engineering and Science)
- EPEC (Feasibility Studies, PUC, Growth)
- State of New Mexico (Renewable Energy Summit)
- DoD (Combined Projects)